теорема относительно объектов (понятий, определений, аксиом, доказательств, правил вывода, теорем и др.) какой-либо научной теории (т. н. предметной, или объектной, теории), доказываемая средствами метатеории (См.
Метатеория) этой теории. Термин "М." употребляется преимущественно в применении к теоремам об объектах формализованных теорий (т. е. в случае, когда предметная теория является
Исчислением
, или формальной системой (См.
Формальная система))
. Если М., относящаяся к какому-либо логико-математическому исчислению, доказывается т. н. финитными средствами, ни в какой форме не использующими абстракции актуальной бесконечности, то её относят к метаматематике (См.
Метаматематика); таковы, например, теорема о дедукции для исчисления высказываний или исчисления предикатов, теорема Гёделя о неполноте формальной арифметики и более богатых систем (см.
Полнота в логике), теорема Чёрча о неразрешимости разрешения проблемы (См.
Разрешения проблема) для исчисления предикатов, теорема Тарского о неопределимости предиката истинности для широкого класса исчислений средствами самих этих исчислений. Если же на характер трактуемых в М. понятий и (или) на средства её доказательства не накладывается никаких финитистских, или конструктивистских (см.
Конструктивное направление в математике), ограничений, то такую М. причисляют к т. н. теоретико-множественной логике предикатов; примеры: теорема Гёделя о полноте исчисления предикатов, теорема Лёвенхейма - Сколема об интерпретируемости любой непротиворечивой теории на области натуральных чисел и вообще любые предложения, в которых говорится что-либо о "произвольной интерпретации", "совокупности всех интерпретаций", "общезначимости" и т.п. (в частности, все результаты о категоричности различных систем аксиом, т. е. об
Изоморфизме произвольных их интерпретаций, удовлетворяющих, быть может, некоторым дополнительным условиям). К М. относятся и любые теоремы о теоремах содержательных математических теорий, например многочисленные "принципы двойственности" из различных областей математики (проективная геометрия, многие алгебраические теории и др.).